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A new idea is proposed to realize the non-contacted voltage measurement of overhead AC transmission lines, which is to inversely 

calculate the voltage parameters by using the power-frequency electric field measurement data. However, the inverse calculation is 

serious ill-posed problem. Two-step solution is proposed to deal with the ill-posed problem. Firstly, the optimal positions of the 

measuring points are searched based on the particle swarm optimization algorithm. It can significantly reduce the condition number of 

observation matrix. Secondly, iterated Tikhonov regularization is used to further improve the calculation. The simulation results show 

that the proposed method can improve the accuracy and stability of the voltage parameters’ identification even at a large noise level. 
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I. INTRODUCTION 

DDING new potential transformer in existing overhead 

transmission lines (OTLs) faces many problems. Thus, 

new ways of monitoring the voltage of OTLs with safe and 

reliable performance need to be developed. 

Numerous studies on the electromagnetic environment of 

high-voltage AC OTLs reveal that the power-frequency 

electric field is significantly correlated with the voltages on 

OTLs [1]. Thus, we propose the innovative idea to inversely 

calculate the voltage characteristic parameters, i.e. amplitude 

and phase, by using the power-frequency electric field data 

measured under OTLs. In this way the non-contacted voltage 

measurement of AC OTLs can be realized. 

However, the inverse calculation is a serious ill-posed 

problem. Errors inevitably exist in actual electric field 

measurement, and then the inverse results may severely 

deviate from the true values. In order to deal with the problem, 

two-step solution is proposed. 

II. MATHEMATICAL MODEL AND OPTIMIZATION METHOD 

A. Mathematical Relationship between Power-frequency 

Voltage and Electric Field of Overhead Transmission Lines 

The analog line charge is set in the equivalent conductor 

based on the Charge Simulation Method [1]. The relationship 

between the voltage U and the analog charge τ is 

U = P                                (1) 

where P is the potential coefficient matrix and its elements can 

be obtained by the principle of mirror image. 

The electric field of the measuring points o(xo, yo) can be 

calulated with  τ 

E = G                                 (2) 

The elements in matrix P and G are determined by the 

positions of the measuring points and the phase conductors. 

The mathematical relationship between the voltages and 

electric field of OTLs can be expressed as 

E = KU                                     (3) 

where K=GP
-1

 is defined as the observation matrix. 

If the positions of the measuring points are selected 

randomly, the condition number of the matrix K may be much 

large, which means the inverse calculation is a serious ill-

posed problem. Consequently, the small noise in E may cause 

the inverse solution to severely deviate from the true solution. 

B. Position Optimization of Measurement Points Based on 

Improved Particle Swarm Optimization Algorithm 

The condition number of the observation matrix K is the 

main index to reflect the ill-posedness of the inverse problem. 

The matrix K is calculated according to the positions of 

electric field measuring points. Therefore, reasonable selection 

of the measuring points’ positions can reduce the condition 

number of matrix K. Here Particle Swarm Optimization 

Algorithm is adopted.  

The fitness function is the condition number of matrix K. 

                      FitFun cond( )K                          (4) 

The variables are the coordinate positions of N measuring 
point in the x and y axes, i.e. 

1[ , , , , ]X m m mn mNx x x  

and
1[ , , , , ]Y m m mn mNy y y ，where M is the number of 

particles. 
Set the number of mesuring points and the specific 

constraints, and successfully search for the global optimal 

solution. The iteration formula for the velocity and position of 

the particle swarm in the (t+1)th generation are as follows [2]:  
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where ω is the inertia weight, c1 and c2 are learning factors,  
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  are random numbers that value from 0 

to 1 respectively. 

The iterative termination condition is reaching the 

maximum number of iterations or the preset fitness threshold 

value.  

C. Inverse Calculation Based on Iterated Tikhonov 

Regularization  

If search space range for the optimal position is limited to 

be adjacent ground, the corresponding cond(K) is still not 

particularly satisfied, but it is much less than the result 

obtained by selected randomly selecting the measuring points. 

In view of this situation, it is necessary to do further 

processing.  

The (3) is transformed into the minimization problem 

min ( )J U
,    2 2( ) || || || ||J U KU E U  

       (7) 

where α is the regularization parameter. 

Iterated Tikhonov regularization is adopted to improve the 

inverse calculation [3]. 
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where K* is the adjoint operator of K. 

The crucial points of the iterated regularization are to set α 

and termination condition of iterative procedure. 

III. SIMULATION DETAILS AND RESULTS 

Fig.1 shows the layout of the three-phase conductors in the 

220 kV overhead transmission lines system. The analytical 

conditions are: 

1) The three-phase voltages of OTLs are symmetrical. 

[127.02 0 127.02 120 127.02 120 ]kVT       U  
2) Only three measuring points are set and they are 

symmetrically placed. 

3) The signal-to-noise ratio of 15 dB is set and a random 

Gauss white noise is added. 

If the measuring points are randomly set  (-5.5 1.5), (0 1.5), 

(5.5 1.5) without the position optimization. Then, 

cond(K)=98.90, and the voltage inverse solutions are  

[199.50 5.8 420.97 71.2 114.77 40.7 ]kV
T
      U . 

Obviously, this result is undesirable. 

In view of the limitations of the actual measurement 

conditions, the position of the measuring points can only be 

selected within a small space. Basing on our previous study, 

we propose two measurement schemes: making a 

measurement near the ground and making a measurement near 

the conductors. 

In the first measurement scheme, the search scope is set as 

15 m 15 mkx    and 1 m 3 mky  . The global optimal 

solutions of ten times of optimization process are same and 

they are (-15 3), (0 1), (15 3). Then, cond(K)=23.56, and the 

voltage inverse solutions are  

[141.52 3.2 138.25 137.6 118.34 125.7 ]kV
T
      U . 

In the second measurement scheme, the search scope is set 

as 10 m 10 mkx    and 12 m 14 mky  . The global 

optimal solutions of ten times of optimization process are also 

same and they are (-9 12), (0 14), (9 12). Then, cond(K)=1.46, 

and the voltage inverse solutions are  

[126.88 2.2 123.17 117.2 132.75 117.4 ]kV
T
      U . 

It shows that the results of the proposed position 

optimization can improve the ill-posed problem of the inverse 

calculation. The inverse solutions obtained from the 

measurements near the conductors are superior to those 

obtained from the measurements near the ground. However, 

measuring near the ground has the advantages of simple 

operation, flexibility and safety. In order to improve the 

calculation accuracy in this condition, iterative Tikhonov 

regularization is used. The optimal solution can be obtained 

after 4 iterations under setting α=6.5*10
-6 

and
, 1.1m  

  || KU E || . Fig.2 shows the waveforms of three-

phase voltages in time domain in each iterative calcualtion. 

 

 
 

  

   

Comparing with the computational process using only regu-

larization method, the choice for optimal α becomes more 

easier with the proposed two-step method. The accurcy and 

speed of iterative calculation are improved. 

IV. CONCLUSION 

The paper proposes a method to deal with the ill-posed 

problem of inverse calculating the three-phase voltages of 

OTLs from the measuring electric field data. It combines 

position optimization of measurement points and iterative 

regularization. The simulation examples show that the 

proposed method can significantly improves the accuracy and 

stability of the inverse solution. 
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Fig.1. Space layout of  220 kV 

OTLs 

Fig.2. Waveforms of three-phase voltages 

in each iterative calcualtion 
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